Inverse Sine
Arcsin(X) = Atn(X / Sqr(-X * X + 1))
From VB Documentation:
(...this should take care of most of your trig stuff...)
Function
Derived equivalents
Secant
Sec(X) = 1 / Cos(X)
Cosecant
Cosec(X) = 1 / Sin(X)
Cotangent
Cotan(X) = 1 / Tan(X)
Inverse Sine
Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse Cosine
Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)
Inverse Secant
Arcsec(X) = Atn(X / Sqr(X * X – 1)) + Sgn((X) – 1) * (2 * Atn(1))
Inverse Cosecant
Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) – 1) * (2 * Atn(1))
Inverse Cotangent
Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine
HSin(X) = (Exp(X) – Exp(-X)) / 2
Hyperbolic Cosine
HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent
HTan(X) = (Exp(X) – Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant
HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant
HCosec(X) = 2 / (Exp(X) – Exp(-X))
Hyperbolic Cotangent
HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) – Exp(-X))
Inverse Hyperbolic Sine
HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine
HArccos(X) = Log(X + Sqr(X * X – 1))
Inverse Hyperbolic Tangent
HArctan(X) = Log((1 + X) / (1 – X)) / 2
Inverse Hyperbolic Secant
HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant
HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent
HArccotan(X) = Log((X + 1) / (X – 1)) / 2
Logarithm to base N
LogN(X) = Log(X) / Log(N)
Good Luck -Josh Have Fun, Be Young... Code BASIC
-Josh Stribling