Here's a reply from comp.graphics.algorithms on 5 Aug 2000<br>on the same question, which gets asked often.<br><br>The derivation involves quaternions or <br>the definition of 4x4 matrices raised to the nth power.<br>I learned it in school as the 'Rodrigues Formula' and<br>it is briefly mentioned in Computer_Graphics: Principles_and_Practice.<br><br><br> co=cos(alpha) ; si=sin(alpha) ; c1 = 1-cos(alpha)<br> e=(e1,e2,e3) unit vector of the rotation axis<br> <br> <br> c1.e1.e1+co c1.e1.e2-si.e3 c1.e1.e3+si.e2<br> M(alpha,e) = c1.e2.e1+si.e3 c1.e2.e2+co c1.e2.e3-si.e1<br> c1.e3.e1-si.e2 c1.e3.e2+si.e1 c1.e3.e3+co <br> <br> <br> The quaternion representing this rotation is<br> <br> c = cos(alpha/2) s = sin(alpha/2)<br> <br> q(alpha,e) = ( c , s.e1, s.e2, s.e3 )